Show simple item record

dc.contributorKharub, Ajit Singhen_US
dc.contributorVerma, Ramesh Pal Singhen_US
dc.contributorVerma, Ajayen_US
dc.creatorVishnu, Kumaren_US
dc.date2016-06-04en_US
dc.date.accessioned2017-02-20T10:25:28Z
dc.date.available2017-02-20T10:25:28Z
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifierhttp://www.indianjournals.com/ijor.aspx?target=ijor:ijgpb&volume=76&issue=2&article=011en_US
dc.identifierhttps://www.researchgate.net/publication/303807556_AMMI_GGE_biplots_and_regression_analysis_to_comprehend_the_G_E_interaction_in_multi-environment_barley_trialsen_US
dc.identifier.citationKumar Vishnu, Ajit Singh Kharub, Ramesh Pal Singh Verma, Ajay Verma. (4/6/2016). AMMI, GGE biplots and regression analysis to comprehend the G x E interaction in multi-environment barley trials. Indian Journal of Genetics and Plant Breeding, 76 (2), pp. 202-204.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/5774
dc.description.abstractThe present study was carried out to ascertain the stable genotypes, environments discrimination and genotype by environment crossovers using different stability models. In AMMI ANOVA, genotype x location interaction implied substantial variation (17.61%) and IPCA1 and IPCA2 altogether captured 65.72% of the interaction mean squares, whereas, in GGE model, PC1 and PC2 captured 36.34% and 15.74% variation, respectively. Four genotypes viz., BH987, DWRB126, DWRB128 and RD2891and two checks, namely, DWRUB52 and DWRB92 were found stable as per GGE AEC view and AMMI biplot. The genotypes, DWRB126 and RD2891 and check DWRB92 were also observed as consistent performers by regression model. The test environments at Bawal, Navgaon and Hisar were observed representative with better discriminating ability. GGE biplot model was found suitable for polygon, AEC view and test environments evaluation.en_US
dc.formatPDFen_US
dc.languageenen_US
dc.publisherIndian Society of Genetics & Plant Breedingen_US
dc.rightsCC-BY-NC-4.0en_US
dc.sourceIndian Journal of Genetics and Plant Breeding;76,(2016) Pagination 202,204en_US
dc.subjectggeen_US
dc.subjectregressionen_US
dc.subjectBarleyen_US
dc.titleAMMI, GGE biplots and regression analysis to comprehend the G x E interaction in multi-environment barley trialsen_US
dc.typeJournal Articleen_US
cg.creator.idVerma, Ramesh Pal Singh: 0000-0002-2621-2015en_US
cg.creator.ID-typeORCIDen_US
cg.subject.agrovocanalysisen_US
cg.subject.agrovocbarleyen_US
cg.subject.agrovocammien_US
cg.subject.agrovocstabilityen_US
cg.contributor.centerIndian Council of Agricultural Research, Indian Institute of Wheat and Barley Research - ICAR-IIWBRen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerDirectorate of Wheat Research - DWRen_US
cg.contributor.crpCRP on Dryland Cereals - DCen_US
cg.contributor.funderCGIAR System Organization - CGIARen_US
cg.date.embargo-end-date2116-06-04en_US
cg.coverage.regionGlobalen_US
cg.contactvishnupbg@gmail.comen_US
cg.identifier.doihttps://dx.doi.org/10.5958/0975-6906.2016.00033.Xen_US
dc.identifier.statusLimited accessen_US
mel.impact-factor0.319en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record


DSpace software copyright © 2002-2016  DuraSpace
Disclaimer:
MELSpace content providers and partners accept no liability to any consequence resulting from use of the content or data made available in this repository. Users of this content assume full responsibility for compliance with all relevant national or international regulations and legislation.
Theme by 
Atmire NV