A Human Machine Hybrid Approach for Systematic Reviews and Maps in International Development and Social Impact Sectors

cg.contactmurat.sartas@wur.nlen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerInternational Fund for Agricultural Development - IFADen_US
cg.contributor.centerWageningen University & Research Centre - WURen_US
cg.contributor.funderInternational Fund for Agricultural Development - IFADen_US
cg.contributor.projectStrengthening Knowledge Management for Greater Development Effectiveness in the Near East, North Africa, Central Asia and Europeen_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.creator.idSartas, Murat: 0000-0001-7331-4201en_US
cg.creator.idAkramkhanov, Akmal: 0000-0002-4316-5580en_US
cg.identifier.doihttps://dx.doi.org/10.3390/f12081027en_US
cg.isijournalISI Journalen_US
cg.issn1999-4907en_US
cg.issue8en_US
cg.journalForestsen_US
cg.subject.agrovocefficiencyen_US
cg.subject.agrovoctext miningen_US
cg.volume12en_US
dc.contributorCummings, Sarahen_US
dc.contributorGarbero, Alessandraen_US
dc.contributorAkramkhanov, Akmalen_US
dc.creatorSartas, Muraten_US
dc.date.accessioned2021-11-10T23:59:00Z
dc.date.available2021-11-10T23:59:00Z
dc.description.abstractThe international development and social impact evidence community is divided about the use of machine-centered approaches in carrying out systematic reviews and maps. While some researchers argue that machine-centered approaches such as machine learning, artificial intelligence, text mining, automated semantic analysis, and translation bots are superior to human-centered ones, others claim the opposite. We argue that a hybrid approach combining machine and human-centered elements can have higher effectiveness, efficiency, and societal relevance than either approach can achieve alone. We present how combining lexical databases with dictionaries from crowdsourced literature, using full texts instead of titles, abstracts, and keywords. Using metadata sets can significantly improve the current practices of systematic reviews and maps. Since the use of machine-centered approaches in forestry and forestry-related reviews and maps are rare, the gains in effectiveness, efficiency, and relevance can be very high for the evidence base in forestry. We also argue that the benefits from our hybrid approach will increase in time as digital literacy and better ontologies improve globally.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/b616c7cff36f3faac5db096141f91e4c/v/3a920e8f37c502547730f0a34e9e97f8en_US
dc.identifier.citationMurat Sartas, Sarah Cummings, Alessandra Garbero, Akmal Akramkhanov. (2/8/2021). A Human Machine Hybrid Approach for Systematic Reviews and Maps in International Development and Social Impact Sectors. Forests, 12 (8).en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/66358
dc.languageenen_US
dc.publisherMDPIen_US
dc.rightsCC-BY-4.0en_US
dc.sourceForests;12,(2021)en_US
dc.subjectcrowdsourcingen_US
dc.subjectdevelopment effectivenessen_US
dc.subjecteffectivenessen_US
dc.subjectartificial intelligence (ai)en_US
dc.subjectsocietal relevanceen_US
dc.titleA Human Machine Hybrid Approach for Systematic Reviews and Maps in International Development and Social Impact Sectorsen_US
dc.typeJournal Articleen_US
dcterms.available2021-08-02en_US
mel.funder.grant#International Fund for Agricultural Development - IFAD :2000001661en_US
mel.impact-factor2.634en_US
mel.project.openhttps://knowledgemanagementportal.org/en_US

Files