Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.)
Views
0% 0
Downloads
0 0%
Open access
Citation
Jana Kholova, Paul Zindy, Srikanth Malayee, Rekha Baddam, M. Tharanya, Sivasakthi Kaliamoorthy, Charles Hash, Olga Votrubová, Ales Soukup, Marie Kocova, Mareme Niang, Vincent Vadez. (7/3/2016). Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L. ) R. Br. ). Functional Plant Biology, 43 (5), pp. 423-437.
Abstract
Traits influencing plant water use eventually define the fitness of genotypes for specific rainfall environments.
Weassessed the response of several water use traits to vapour pressure deficit (VPD) in pearl millet (Pennisetum glaucum (L.)
R.Br.) genotypes known to differ in drought adaptation mechanisms: PRLT 2/89–33 (terminal drought-adapted parent), H
77/833–2 (terminal drought-sensitive parent) and four near-isogenic lines introgressed with a terminal drought tolerance
quantitative trait locus (QTL) from PRLT2/89–33 (ICMR01029, ICMR01031, ICMR02042, and ICMR02044). Plant water
use traits at various levels of plant organisation were evaluated in seven experiments in plants exposed either transiently or
over the long term to differentVPDregimes: biomass components, transpiration (water usage per time unit) and transpiration
rate (TR) upon transientVPDincrease (gH2Ocm–2 h–1)), transpiration efficiency (g dry biomass per kgH2Otranspired), leaf
expansion rate (cm per thermal time unit) and root anatomy (endodermis dimensions)). High VPD decreased biomass
accumulation by reducing tillering, the leaf expansion rate and the duration of leaf expansion; decreased root endodermis cell
size; and increasedTRand the rate ofTRincrease upon gradual short-termVPDincreases. Such changes may allow plants to
increase their water transport capacity in a high VPD environment and are genotype-specific. Some variation in water use
components was associated with terminal drought adaptation QTL. Knowledge of water use traits’ plasticity in growth
environments that varied in evaporative demand, and on their genetic determinacy, is necessary to develop trait-based
breeding approaches to complex constraints.
Permanent link
Other URI
AGROVOC Keyword(s)
Author(s) ORCID(s)
Vadez, Vincent https://orcid.org/0000-0003-2014-0281