High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings
cg.contact | agostino.fricano@crea.gov.it | en_US |
cg.contributor.center | International Center for Agricultural Research in the Dry Areas - ICARDA | en_US |
cg.contributor.center | University of Catania - UNICT | en_US |
cg.contributor.center | Bahri Dagdas International Agricultural Research Institute - BDUTAE | en_US |
cg.contributor.center | Hassan II University - UH2C | en_US |
cg.contributor.center | Cukurova University, Faculty of Agriculture - CU - FoA | en_US |
cg.contributor.center | Cukurova University - CU Turkey | en_US |
cg.contributor.center | Università degli Studi del Piemonte Orientale “Amedeo Avogadro” - UNIPMN | en_US |
cg.contributor.center | Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Genomica e Bioinformatica - CREA - GB | en_US |
cg.contributor.crp | Resilient Agrifood Systems - RAFS | en_US |
cg.contributor.crp | Genetic Innovation - GI | en_US |
cg.contributor.funder | Italian Ministero Politiche Agricole Alimentari e Forestali | en_US |
cg.contributor.initiative | Accelerated Breeding | en_US |
cg.contributor.initiative | Fragility to Resilience in Central and West Asia and North Africa | en_US |
cg.contributor.project | Communication and Documentation Information Services (CODIS) | en_US |
cg.contributor.project-lead-institute | International Center for Agricultural Research in the Dry Areas - ICARDA | en_US |
cg.coverage.country | IT | en_US |
cg.coverage.region | Southern Europe | en_US |
cg.creator.id | Visioni, Andrea: 0000-0002-0586-4532 | en_US |
cg.creator.id | Fricano, Agostino: 0000-0003-3715-5834 | en_US |
cg.identifier.doi | https://dx.doi.org/10.1093/g3journal/jkac022 | en_US |
cg.isijournal | ISI Journal | en_US |
cg.issn | 2160-1836 | en_US |
cg.issue | 3 | en_US |
cg.journal | G3: Genes | Genomes | Genetics | en_US |
cg.subject.actionArea | Resilient Agrifood Systems | en_US |
cg.subject.actionArea | Genetic Innovation | en_US |
cg.subject.agrovoc | barley | en_US |
cg.subject.agrovoc | Barley | en_US |
cg.volume | 12 | en_US |
dc.contributor | Visioni, Andrea | en_US |
dc.contributor | Özkan, Hakan | en_US |
dc.contributor | Kara, Ibrahim | en_US |
dc.contributor | Roberta Lo Piero, Angela | en_US |
dc.contributor | Rachdad, Fatima Ezzahra | en_US |
dc.contributor | Tondelli, Alessandro | en_US |
dc.contributor | Valè, Giampiero | en_US |
dc.contributor | Cattivelli, Luigi | en_US |
dc.contributor | Fricano, Agostino | en_US |
dc.creator | Puglisi, Damiano | en_US |
dc.date.accessioned | 2022-12-16T19:43:22Z | |
dc.date.available | 2022-12-16T19:43:22Z | |
dc.description.abstract | In plants, the study of belowground traits is gaining momentum due to their importance on yield formation and the uptake of water and nutrients. In several cereal crops, seminal root number and seminal root angle are proxy traits of the root system architecture at the mature stages, which in turn contributes to modulating the uptake of water and nutrients. Along with seminal root number and seminal root angle, experimental evidence indicates that the transpiration rate response to evaporative demand or vapor pressure deficit is a key physiological trait that might be targeted to cope with drought tolerance as the reduction of the water flux to leaves for limiting transpiration rate at high levels of vapor pressure deficit allows to better manage soil moisture. In the present study, we examined the phenotypic diversity of seminal root number, seminal root angle, and transpiration rate at the seedling stage in a panel of 8-way Multiparent Advanced Generation Inter-Crosses lines of winter barley and correlated these traits with grain yield measured in different site-by-season combinations. Second, phenotypic and genotypic data of the Multiparent Advanced Generation Inter-Crosses population were combined to fit and cross-validate different genomic prediction models for these belowground and physiological traits. Genomic prediction models for seminal root number were fitted using threshold and log-normal models, considering these data as ordinal discrete variable and as count data, respectively, while for seminal root angle and transpiration rate, genomic prediction was implemented using models based on extended genomic best linear unbiased predictors. The results presented in this study show that genome-enabled prediction models of seminal root number, seminal root angle, and transpiration rate data have high predictive ability and that the best models investigated in the present study include first-order additive × additive epistatic interaction effects. Our analyses indicate that beyond grain yield, genomic prediction models might be used to predict belowground and physiological traits and pave the way to practical applications for barley improvement. | en_US |
dc.format | en_US | |
dc.identifier | https://mel.cgiar.org/reporting/downloadmelspace/hash/2c94be03d96f3637647c0a2c05d426e9/v/96c9eb27f1a64ca37980962c4720ef42 | en_US |
dc.identifier.citation | Damiano Puglisi, Andrea Visioni, Hakan Özkan, Ibrahim Kara, Angela Roberta Lo Piero, Fatima Ezzahra Rachdad, Alessandro Tondelli, Giampiero Valè, Luigi Cattivelli, Agostino Fricano. (31/1/2022). High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings. G3: Genes | Genomes | Genetics, 12 (3). | en_US |
dc.identifier.status | Open access | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11766/67856 | |
dc.language | en | en_US |
dc.publisher | Genetics Society of America (G3) | en_US |
dc.rights | CC-BY-4.0 | en_US |
dc.source | G3: Genes | Genomes | Genetics;12,(2022) | en_US |
dc.subject | transpiration rate | en_US |
dc.subject | genomic prediction | en_US |
dc.subject | magic | en_US |
dc.subject | seminal root angle | en_US |
dc.subject | seminal root number | en_US |
dc.subject | threshold gblup | en_US |
dc.subject | mpp | en_US |
dc.subject | multiparental populations | en_US |
dc.subject | multiparent advanced generation inter-cross (magic) | en_US |
dc.title | High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings | en_US |
dc.type | Journal Article | en_US |
dcterms.available | 2022-01-31 | en_US |
mel.impact-factor | 3.542 | en_US |