High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings

cg.contactagostino.fricano@crea.gov.iten_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerUniversity of Catania - UNICTen_US
cg.contributor.centerBahri Dagdas International Agricultural Research Institute - BDUTAEen_US
cg.contributor.centerHassan II University - UH2Cen_US
cg.contributor.centerCukurova University, Faculty of Agriculture - CU - FoAen_US
cg.contributor.centerCukurova University - CU Turkeyen_US
cg.contributor.centerUniversità degli Studi del Piemonte Orientale “Amedeo Avogadro” - UNIPMNen_US
cg.contributor.centerConsiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Genomica e Bioinformatica - CREA - GBen_US
cg.contributor.crpResilient Agrifood Systems - RAFSen_US
cg.contributor.crpGenetic Innovation - GIen_US
cg.contributor.funderItalian Ministero Politiche Agricole Alimentari e Forestalien_US
cg.contributor.initiativeAccelerated Breedingen_US
cg.contributor.initiativeFragility to Resilience in Central and West Asia and North Africaen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryITen_US
cg.coverage.regionSouthern Europeen_US
cg.creator.idVisioni, Andrea: 0000-0002-0586-4532en_US
cg.creator.idFricano, Agostino: 0000-0003-3715-5834en_US
cg.identifier.doihttps://dx.doi.org/10.1093/g3journal/jkac022en_US
cg.isijournalISI Journalen_US
cg.issn2160-1836en_US
cg.issue3en_US
cg.journalG3: Genes | Genomes | Geneticsen_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.actionAreaGenetic Innovationen_US
cg.subject.agrovocbarleyen_US
cg.subject.agrovocBarleyen_US
cg.volume12en_US
dc.contributorVisioni, Andreaen_US
dc.contributorÖzkan, Hakanen_US
dc.contributorKara, Ibrahimen_US
dc.contributorRoberta Lo Piero, Angelaen_US
dc.contributorRachdad, Fatima Ezzahraen_US
dc.contributorTondelli, Alessandroen_US
dc.contributorValè, Giampieroen_US
dc.contributorCattivelli, Luigien_US
dc.contributorFricano, Agostinoen_US
dc.creatorPuglisi, Damianoen_US
dc.date.accessioned2022-12-16T19:43:22Z
dc.date.available2022-12-16T19:43:22Z
dc.description.abstractIn plants, the study of belowground traits is gaining momentum due to their importance on yield formation and the uptake of water and nutrients. In several cereal crops, seminal root number and seminal root angle are proxy traits of the root system architecture at the mature stages, which in turn contributes to modulating the uptake of water and nutrients. Along with seminal root number and seminal root angle, experimental evidence indicates that the transpiration rate response to evaporative demand or vapor pressure deficit is a key physiological trait that might be targeted to cope with drought tolerance as the reduction of the water flux to leaves for limiting transpiration rate at high levels of vapor pressure deficit allows to better manage soil moisture. In the present study, we examined the phenotypic diversity of seminal root number, seminal root angle, and transpiration rate at the seedling stage in a panel of 8-way Multiparent Advanced Generation Inter-Crosses lines of winter barley and correlated these traits with grain yield measured in different site-by-season combinations. Second, phenotypic and genotypic data of the Multiparent Advanced Generation Inter-Crosses population were combined to fit and cross-validate different genomic prediction models for these belowground and physiological traits. Genomic prediction models for seminal root number were fitted using threshold and log-normal models, considering these data as ordinal discrete variable and as count data, respectively, while for seminal root angle and transpiration rate, genomic prediction was implemented using models based on extended genomic best linear unbiased predictors. The results presented in this study show that genome-enabled prediction models of seminal root number, seminal root angle, and transpiration rate data have high predictive ability and that the best models investigated in the present study include first-order additive × additive epistatic interaction effects. Our analyses indicate that beyond grain yield, genomic prediction models might be used to predict belowground and physiological traits and pave the way to practical applications for barley improvement.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/2c94be03d96f3637647c0a2c05d426e9/v/96c9eb27f1a64ca37980962c4720ef42en_US
dc.identifier.citationDamiano Puglisi, Andrea Visioni, Hakan Özkan, Ibrahim Kara, Angela Roberta Lo Piero, Fatima Ezzahra Rachdad, Alessandro Tondelli, Giampiero Valè, Luigi Cattivelli, Agostino Fricano. (31/1/2022). High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings. G3: Genes | Genomes | Genetics, 12 (3).en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/67856
dc.languageenen_US
dc.publisherGenetics Society of America (G3)en_US
dc.rightsCC-BY-4.0en_US
dc.sourceG3: Genes | Genomes | Genetics;12,(2022)en_US
dc.subjecttranspiration rateen_US
dc.subjectgenomic predictionen_US
dc.subjectmagicen_US
dc.subjectseminal root angleen_US
dc.subjectseminal root numberen_US
dc.subjectthreshold gblupen_US
dc.subjectmppen_US
dc.subjectmultiparental populationsen_US
dc.subjectmultiparent advanced generation inter-cross (magic)en_US
dc.titleHigh accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlingsen_US
dc.typeJournal Articleen_US
dcterms.available2022-01-31en_US
mel.impact-factor3.542en_US

Files