Water use efficiency of winter-sown chickpea under supplemental irrigation in a mediterranean environment
Views
0% 0
Downloads
0 0%
Timeless limited access
Loading...
View/Open
Corresponding Author
Date
2003-10-30
Date Issued
2004-04-15
ISI Journal
Impact factor: 4.021 (Year: 2003)
Authors
Citation
Theib Oweis, Ahmed Hachum. (15/4/2004). Water use efficiency of winter-sown chickpea under supplemental irrigation in a mediterranean environment. Agricultural Water Management, 66 (2), pp. 163-179.
Abstract
Chickpea is one of the major legume crops grown in the West Asia and North Africa (WANA) region. It has considerable importance as a food, feed and fodder. Traditionally, it is sown in spring as a rainfed crop in the region, which has highly variable and often insufficient rainfall. It is, therefore, largely raised on residual moisture, which results in low and variable yields and discourages farmers from investing inputs in its production. In the early 1990s, a winter-sown chickpea technology was developed that outweighs spring-sown chickpea in terms of productivity, water use efficiency and other traits. Limited supplemental irrigation can, however, play a major role in boosting and stabilizing the productivity of both spring-sown and winter-sown chickpea. Therefore, we investigated the effect of supplemental irrigation and sowing date on yield and water use efficiency in winter-sown chickpea.
An experiment was carried out over four cropping seasons (1997–2001) at ICARDA’s main station at Tel Hadya, Aleppo, northern Syria (mean annual rainfall 330 mm). A cold-tolerant chickpea cultivar with improved resistance to ascochyta blight (ILC 3279, released as Ghab 2 in Syria) was grown in rotation with wheat. The experiment included three sowing dates (late November, mid-January, and late February) and four levels of supplemental irrigation (SI): full SI, 2/3 SI, 1/3 SI, and no SI, i.e. rainfed. The plots were replicated three times in a split-plot design, with date of sowing being the main plot treatment. Soil water content was monitored at approximately at 7–14-day intervals using a neutron probe. Crop evapotranspiration was determined for each subplot during each time interval, from sowing to harvest, using the soil-water balance equation. Water use efficiency was determined as the ratio of crop yield per unit area to seasonal evapotranspiration.
The results showed that chickpea yield per unit area increases with both earlier sowing and increased SI. However, water use efficiency under supplemental irrigation decreases with earlier sowing, due to the relatively large increase that occurs in the amount of evapotranspiration at early sowing dates. The study’s results indicated that a 2/3 SI level gives the optimum water use efficiency for chickpea under supplemental irrigation. Under rainfed conditions, however, it was found that sowing chickpea around mid-January resulted in the highest WUE. The analysis also proposed a function, based on regression, which relates winter-sown chickpea yield to water use and which is applicable under both supplemental and rainfed conditions.
Permanent link
Collections
Other URI
AGROVOC Keyword(s)
Subject(s)
Author(s) ORCID(s)
Oweis, Theib https://orcid.org/0000-0002-2003-4852