Mediterranean forest mapping using hyper-spectral satellite imagery

cg.contactselmaetteieb@yahoo.fren_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerAristotle University of Thessaloniki - AUTHen_US
cg.contributor.centerInternational Centre for Advanced Mediterranean Agronomic Studies, Mediterranean Agronomic Institute of Chania - CIHEAM - IMACen_US
cg.contributor.crpCGIAR Research Program on Dryland Systems - DSen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryGRen_US
cg.coverage.regionSouthern Europeen_US
cg.creator.idLouhaichi, Mounir: 0000-0002-4543-7631en_US
cg.date.embargo-end-date2112-11-15en_US
cg.identifier.doihttps://dx.doi.org/10.1007/s12517-012-0748-6en_US
cg.isijournalISI Journalen_US
cg.issn1866-7511en_US
cg.issue12en_US
cg.journalArabian Journal of Geosciencesen_US
cg.volume6en_US
dc.contributorLouhaichi, Mouniren_US
dc.contributorKalaitzidis, Charitonen_US
dc.contributorGitas, Ioannisen_US
dc.creatorEtteieb, Selmaen_US
dc.date.accessioned2017-07-23T22:12:09Z
dc.date.available2017-07-23T22:12:09Z
dc.description.abstractheterogeneity that is associated with Mediterranean climate, floristic biodiversity and topographic variability. Satellite remote sensing can be an effective tool for characterizing and monitoring forest vegetation distribution within these fragmented Mediterranean landscapes. The heterogeneity of Mediterranean vegetation, however, often exceeds the resolution typical of most satellite sensors. Hyper-spectral remote sensing technology demonstrates the capacity for accurate vegetation identification. The objective of this research is to determine to what extent forest types can be discriminated using different image analysis techniques and spectral band combinations of Hyperion satellite imagery. This research mapped forest types using a pixel-based Spectral Angle Mapper (SAM), nearest neighbour and membership function classifiers of the objectoriented classification. Hyperion classification was done after reducing Hyperion data using nine selected band combinations. Results indicate that the selection of band combination while reducing the Hyperion dataset improves classification results for both the overall and the individual forest type accuracy, in particular for the selected optimum Hyperion band combination. One shortcoming is that the performance of the best selected band combination was superior in terms of both overall and individual forest type accuracy when applying the membership classifier of the object-oriented method compared to SAM and nearest neighbour classifiers. However, all techniques seemed to suffer from a number of problems, such as spectral similarity among forest types, overall low energy response of the Hyperion sensor, Hyperion medium spatial resolution and spatiotemporal and spectral heterogeneity of the Mediterranean ecosystem at multiple scales.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifierhttps://link.springer.com/article/10.1007/s12517-012-0748-6en_US
dc.identifier.citationSelma Etteieb, Mounir Louhaichi, Chariton Kalaitzidis, Ioannis Gitas. (31/12/2013). Mediterranean forest mapping using hyper-spectral satellite imagery. Arabian Journal of Geosciences, 6 (12), pp. 5017-5032.en_US
dc.identifier.statusLimited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/7195
dc.languageenen_US
dc.publisherSpringer Verlag (Germany)en_US
dc.sourceArabian Journal of Geosciences;6,(2012) Pagination 5017-5032en_US
dc.subjecthyperion satellite imageryen_US
dc.subjectmediterranean forests mappingen_US
dc.subjecthyperion data reductionen_US
dc.subjectpixel-based spectral angle mapper (sam)en_US
dc.subjectobject-oriented classificationen_US
dc.titleMediterranean forest mapping using hyper-spectral satellite imageryen_US
dc.typeJournal Articleen_US
dcterms.available2012-11-15en_US
dcterms.extent5017-5032en_US
dcterms.issued2013-12-31en_US
mel.impact-factor0.955en_US

Files