Prediction of urban surface water quality scenarios using hybrid stacking ensembles machine learning model in Howrah Municipal Corporation, West Bengal

cg.contactmdgalal.uddin@universityofgalway.ieen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerVisva-Bharati Universityen_US
cg.contributor.centerKing Saud Universityen_US
cg.contributor.centerUniversity of Coimbra - UC Portugalen_US
cg.contributor.centerIbn Zohr University - UIZen_US
cg.contributor.centerUniversity of Galway, Irelanden_US
cg.contributor.centerPrajukti Research Private Limiteden_US
cg.contributor.centerMaulana Abul Kalam Azad University of Technologyen_US
cg.contributor.centerInternational University of Agadir - Universiapolisen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryINen_US
cg.coverage.regionSouthern Asiaen_US
cg.creator.idGovind, Ajit: 0000-0002-0656-0004en_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://doi.org/10.1016/j.jenvman.2024.122721en_US
cg.isijournalISI Journalen_US
cg.issn0301-4797en_US
cg.journalJournal of Environmental Managementen_US
cg.subject.agrovocwest bengalen_US
cg.subject.agrovocmachine learningen_US
cg.volume370en_US
dc.contributorBhattacharjee, Ishitaen_US
dc.contributorSahoo, Satiprasaden_US
dc.contributorAbdelrahman, Hassaneinen_US
dc.contributorUddin, Md Galalen_US
dc.contributorFnais, Mohammed S.en_US
dc.contributorGovind, Ajiten_US
dc.contributorAbioui, Mohameden_US
dc.creatorSingha, Chiranjiten_US
dc.date.accessioned2025-09-11T18:24:36Z
dc.date.available2025-09-11T18:24:36Z
dc.description.abstractIn the pursuit of understanding surface water quality for sustainable urban management, we created a machine learning modeling framework that utilized Random Forest (RF), Cubist, Extreme Gradient Boosting (XGB), Multivariate Adaptive Regression Splines (MARS), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), and their hybrid stacking ensemble RF (SE-RF), as well as stacking Cubist (SE-Cubist), to predict the distribution of water quality in the Howrah Municipal Corporation (HMC) area in West Bengal, India. Additionally, we employed the ReliefF and Shapley Additive exPlanations (SHAP) methods to elucidate the underlying factors driving water quality. We first estimated the water quality index (WQI) to model seven water quality parameters: total hardness (TH), pH, total dissolved solids (TDS), dissolved oxygen (DO), biochemical oxygen demand (BOD), calcium (Ca), magnesium (Mg). Then six independent factors were utilized (i.e. Precipitation (Pr), Maximum Temperature (Tmax), Minimum Temperature (Tmin), Normalized Difference Turbidity Index (NDTI), Normalized Difference Chlorophyll Index (NDCI), and Total Dissolved Solids (TDS)) for predicting the WQI mapping through the different ML models. This study demonstrated that the SE-Cubist model outperforms other ML models. During the testing phase, it achieved the best modeling results with an R2 = 0.975, RMSE = 0.351, and MAE = 0.197. The ReliefF and SHAP analyses identified Pr and Tmax as the most significant factors influencing WQI within the study area.en_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationChiranjit Singha, Ishita Bhattacharjee, Satiprasad Sahoo, Hassanein Abdelrahman, Md Galal Uddin, Mohammed S. Fnais, Ajit Govind, Mohamed Abioui. (1/11/2024). Prediction of urban surface water quality scenarios using hybrid stacking ensembles machine learning model in Howrah Municipal Corporation, West Bengal. Journal of Environmental Management, 370.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/70099
dc.languageenen_US
dc.publisherElsevier (12 months)en_US
dc.sourceJournal of Environmental Management;370,(2024)en_US
dc.subjectrandom forest (rf)en_US
dc.subjectwater quality index (wqi)en_US
dc.subjecthowrah municipal corporation (hmc)en_US
dc.titlePrediction of urban surface water quality scenarios using hybrid stacking ensembles machine learning model in Howrah Municipal Corporation, West Bengalen_US
dc.typeJournal Articleen_US
dcterms.available2024-10-13en_US
dcterms.issued2024-11-01en_US
mel.impact-factor8.4en_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description: