A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits
Views
0% 0
Downloads
0 0%
Timeless limited access
Loading...
View/Open
Corresponding Author
Date
2003-12-16
Date Issued
ISI Journal
Impact factor: 4.439 (Year: 2003)
Authors
Citation
Ismahane Elouafi, Nachit Miloudi. (16/12/2003). A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. TAG Theoretical and Applied Genetics, 108 (3), pp. 401-413.
Abstract
Durum wheat (Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5/Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites × years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTL×E interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.