Improving water productivity in the Australian Grains industry—a nationally coordinated approach
Views
0% 0
Downloads
0 0%
Limited access
Citation
John Kirkegaard, James Hunt, Therese McBeath, Julianne Lilley, Andrew Moore, Kirsten Verburg, Michael Robertson, Yvette Oliver, Phil Ward, Stephen Milroy, Anthony Whitbread. (7/8/2014). Improving water productivity in the Australian Grains industry—a nationally coordinated approach. Crop & Pasture Science, 65, pp. 583-601.
Abstract
Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective
of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity
growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted
on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency
(WUE) Initiative, which challenged growers and researchers to liftWUEof grain-based production systems by 10%. Sixteen
regional grower research teams distributed across southern Australia (300–700mm annual rainfall) proposed a range of
agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of
agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and
benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and
to play an integration and communication role. The 16 diverse regional project activities were organised into four themes
related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use,
managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and
emphasised. At annual meetings, the teams compared the impacts of various management strategies across different
regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori
outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale.We
demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the
10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate
varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of
pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and
adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated
a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of
the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.
Permanent link
Other URI
AGROVOC Keyword(s)
Subject(s)
Author(s) ORCID(s)
Whitbread, Anthony https://orcid.org/0000-0003-4840-7670