Yield response of lentil to directly applied and residual phosphorus in a Mediterranean environment


Views
0% 0
Downloads
0 0%

Thumbnail Image

Date

2004-07-01

Date Issued

Citation

K. Harmsen, Maher Mahmoudi. (1/7/2004). Yield response of lentil to directly applied and residual phosphorus in a Mediterranean environment. Nutrient Cycling in Agroecosystems, 69, pp. 233-245.
The response of lentil grown under rainfed conditions to directly applied and residual phosphorus (P) was described by a modified Mitscherlich equation, accounting for the effects of rainfall on (1) potential yield, and (2) the availability of soil-P to the crop. The response of lentil yield to directly applied and residual P was studied in two-course cereal–lentil rotational trials under rainfed conditions in a Mediterranean-type environment. Cereal crops were grown at different P application rates during 4 growing seasons at 3 sites, representing different rainfall zones in northwest Syria. Lentil (Lens culinaris Med.) was grown during 4 seasons at the same sites, each lentil crop following a cereal crop. In 3 out of 4 lentil-growing seasons, additional P was applied to lentil in subplots to compare the residual and direct effects of P application. The initial contents of extractable soil-P (P-Olsen) were low at all sites, in the range of 2–5 ppm P. Under the conditions of the experiments, lentil appeared to benefit slightly more from P applied to the preceding wheat crop (residual P) than from directly applied P. It is shown that the modified Mitscherlich equation could be used as a basis for P fertilizer recommendations for rainfed farming. As for lentil, it was concluded that a single application of P to the wheat crop in a wheat/lentil rotation could reduce the cost of lentil production, without reducing lentil yield.